автор урока - учитель математики - вт, 08/08/2023 - 22:57
Математика 11 класс
Олимпиадные задания 11 класс
Добиться хороших результатов в олимпиадах можно только путем прорешивания как можно большего количества задач.
Варианты олимпиад по математике 11 класс с ответами и решением :
1 вариант | 2 вариант | 3 вариант
Математическая олимпиада
Решение олимпиадных задач по математике
Задача
Пусть многочлен
P(x) = anxn + an–1xn–1 + ... + a0
имеет хотя бы один действительный корень и
a0 ≠ 0.
Докажите, что, последовательно вычеркивая в некотором порядке одночлены в записи P(x), можно получить из него число a0 так, чтобы каждый промежуточный многочлен также имел хотя бы один действительный корень.
Решение
Приведем схему вычеркивания одночленов, дающую на каждом шаге многочлены, имеющие корни.
Пусть многочлен
P(x) = axn + bxm + ... + c
(a, b, c ≠ 0) содержит не менее трёх членов (xn и xm
две старших степени переменной x в P).
Если n или m нечётно, вычеркивая в P(x) одночлен bxm или axn соответственно, получим многочлен нечётной степени, имеющий хотя бы один корень.
Вычеркивая в дальнейшем другие одночлены, мы получим искомую оследовательность многочленов. Поэтому далее рассматриваем случай, когда n и m чётны.
Умножая при необходимости на –1, можем считать, что a > 0. Если c < 0, то в P(x) можно вычеркнуть любой одночлен, отличный от старшего и свободного члена, полученный многочлен P1(x) принимает отрицательное значение c при x = 0 и положительное при достаточно большом x, значит, имеет корень. Далее считаем, что c > 0.
Пусть P(t) = 0. Если b > 0, вычеркнем в P(x) одночлен bxm. При больших положительных x значение полученного многочлена P1(x) положительно, но P1(t) = P(t) – btm < 0 (так как t ≠ 0, а m чётно), следовательно P1(x) имеет корни.
Если же b < 0, вычеркнем одночлен axn, тогда значения P(x) отрицательны при больших x, но P1(0) = P(0) = c > 0, значит, он тоже имеет корни.
По приведенной схеме мы получим в конце многочлен, имеющий корни и содержащий ровно два одночлена, один из которых P(0). Утверждение доказано.
Олимпиадные задачи по математике 11 класс с решением и ответами.
Олимпиадные задания - задачи олимпиад.
Олимпиадные задания с решением. 11 класс. Вариант 2.
Задача № 1 :
Докажите, что уравнение xy = 2006 (x+y) имеет решения в целых числах.
Задача № 2 :
Докажите, что если α, β, γ - углы произвольного треугольника,
то справедливо тождество cos2α + cos2β + cos2γ + 2 cosα cosβ cosγ = 1.
Задача № 3 :
Три шара радиуса R касаются друг друга и плоскости α, четвертый шар радиуса R положен сверху так, что касается каждого из трех данных шаров. Определите высоту «горки» из четырех шаров.
Задача № 4 :
Докажите неравенство x2 - 3x3 < 1/6 на луче [1/4; + ∞).
Задача № 5 :
В прямоугольник 20 x 25 бросают 120 квадратов 1 x 1. Докажите, что в прямоугольник можно поместить круг с диаметром, равным 1, не имеющий общих точек ни с одним из квадратов.
Решение задач :
Задача № 1 :
Преобразуем уравнение к следующему виду: (х – 2006)(у - 2006) = 20062.
Уравнение имеет решения, например, х = у = 4012.
Задача № 2 :
Преобразуем выражение в левой части равенства, учитывая, что α + β + γ = π,
и применяя формулы: cos2x = (1 + cos2x)/2, cosx = - cos(π - x), cosx + cosy = (2cos((x + y)/2))cos((x - y)/2),
получим справедливое тождество.
Задача № 3 :
Пусть четыре шара радиуса R c центрами A, B, C, D касаются друг друга и первые три из них – плоскости a в точках A1, B1, C1 (см. рис).
Тогда точки A, B, C, D являются вершинами правильной пирамиды с ребром 2R.
Вершина D этой пирамиды проектируется в центр основания О.
Задача № 4 :
Пусть y = x2 – 3x3. Тогда y' = 2x – 9x2 и с помощью метода интервалов получаем, что y' < 0 при всех x>2/9.
Но 1/4>2/9, следовательно, функция y(x) убывает на луче [1/4; +∞].
Это значит, что x2 - 3x3 < 1/16 - 3/64 = 1/64 < 1/64.
Задача № 5 :
Окружим каждый квадрат полоской шириной 1/2.
Образующие фигуры тоже квадраты со стороной 1 + 2 x 1/2 = 2, имеют площадь равную 4.
Их общая площадь равна 4 x 120 = 480, в то время как искомая площадь равна 500.
Следовательно, найдется точка, которая не покрыта построенными квадратами, но это значит, что она удалена от данных квадратов не меньше чем на по всем направлениям.
Круг радиуса с центром в этой точке не имеет общих точек ни с одним из квадратов.
Олимпиадные задания по математике 11 класс:
Математическая олимпиада физтеха
Варианты заданий с решением и ответами :
1 вариант | 2 вариант | 3 вариант
Всероссийская олимпиада по математике | Международная олимпиада по математике