ЕГЭ по математике

ЕГЭ по математике

ЕГЭ по математике профильный уровень

Работа состоит из 19 заданий.
Часть 1:
8 заданий с кратким ответом базового уровня сложности.
Часть 2:
4 задания с кратким ответом
7 заданий с развернутым ответом высокого уровня сложности.

Время выполнения - 3 часа 55 минут.

Примеры заданий ЕГЭ

Решение заданий ЕГЭ по математике.

 

Задача с решением:

В правильной треугольной пирамиде АВСS с основанием АВС известны ребра: АВ = 5 корней из 3, SC = 13.
Найти угол, образованный плоскостью основания и прямой, проходящей через середину ребер АS и ВС.

Решение:

1. Поскольку SABC - правильная пирамида, то ABC - равносторонний треугольник, а остальные грани - равные между собой равнобедренные треугольники.
То есть все стороны основания равны 5 sqrt(3), а все боковые ребра равны 13.

2. Пусть D - середина BC, E - середина AS, SH - высота, опущенная из точки S к основанию пирамиды, EP - высота, опущенная из точки E к основанию пирамиды.

3. Найдем AD из прямоугольного треугольника CAD по теореме Пифагора. Получится 15/2 = 7.5.

4. Поскольку пирамида правильная, точка H - это точка пересечения высот/медиан/биссектрис треугольника ABC, а значит, делит AD в отношении 2:1 (AH = 2 AD).

5. Найдем SH из прямоугольного треугольника ASH. AH = AD 2/3 = 5, AS = 13, по теореме Пифагора SH = sqrt(132-52) = 12.

6. Треугольники AEP и ASH оба прямоугольные и имеют общий угол A, следовательно, подобные. По условию, AE = AS/2, значит, и AP = AH/2, и EP = SH/2.

7. Осталось рассмотреть прямоугольный треугольник EDP (нас как раз интересует угол EDP).
EP = SH/2 = 6;
DP = AD 2/3 = 5;

Тангенс угла EDP = EP/DP = 6/5,
Угол EDP = arctg(6/5)

Ответ:

arctg(6/5)

 

Демонстрационный вариант ЕГЭ по математике

 

Задания для подготовки к ЕГЭ по математике: базовый и профильный уровень с ответами и решением.

Математика:    
базовый   |   профильный 1-12   |   13   |   14   |   15   |   16   |   17   |   18   |   19   |       Главная

 

 

ЕГЭ по математике профильный уровень задания с решением

   |      Еще задания 19 профильного уровня егэ по математике с решением

   |      Задание 19 профильного уровня с решением

 

 

Олимпиада по математике (решение, ответы) 11 класс :            
1 вариант    |       2 вариант    |       3 вариант

 

Математика: