автор урока - учитель математики - вт, 08/08/2023 - 22:57
Математические олимпиады
А знаете ли вы, что?
Леонардо да Винчи вывел правило, согласно которому квадрат диаметра ствола дерева равен сумме квадратов диаметров ветвей, взятых на общей фиксированной высоте. Более поздние исследования подтвердили его с одним лишь отличием — степень в формуле необязательно равняется 2, а лежит в пределах от 1,8 до 2,3. Традиционно считалось, что эта закономерность объясняется тем, что у дерева с такой структурой оптимальный механизм снабжения веток питательными веществами. Однако в 2010 году американский физик Кристоф Эллой нашёл более простое механическое объяснение феномену: если рассматривать дерево как фрактал, то закон Леонардо минимизирует вероятность слома веток под воздействием ветра.
Если умножить ваш возраст на 7, затем умножить на 1443, то результатом будет ваш возраст написанный три раза подряд.
Мы считаем отрицательные числа чем-то естественным, но так было далеко не всегда. Впервые отрицательные числа были узаконены в Китае в III веке, но использовались лишь для исключительных случаев, так как считались, в общем, бесмыссленными. Чуть позднее отрицательные числа стали использоваться в Индии для обозначения долгов, но западнее они не прижились – знаменитый Диофант Александрийский утверждал, что уравнение 4x+20=0 – абсурдно.
Американский математик Джордж Данциг, будучи аспирантом университета, однажды опоздал на урок и принял написанные на доске уравнения за домашнее задание. Оно показалось ему сложнее обычного, но через несколько дней он смог его выполнить. Оказалось, что он решил две «нерешаемые» проблемы в статистике, над которыми бились многие учёные.
В русской математической литературе ноль не является натуральным числом, а в западной, наоборот, принадлежит ко множеству натуральных чисел.
Используемая нами десятичная система счисления возникла по причине того, что у человека на руках 10 пальцев. Способность к абстрактному счёту появилась у людей не сразу, а использовать для счёта именно пальцы оказалось удобнее всего. Цивилизация майя и независимо от них чукчи исторически использовали двадцатичную систему счисления, применяя пальцы не только рук, но и ног. В основе распространённых в древних Шумере и Вавилоне двенадцатеричной и шестидесятиричной систем тоже было использование рук: большим пальцем отсчитывались фаланги других пальцев ладони, число которых равно 12.
Одна знакомая дама просила Эйнштейна позвонить ей, но предупредила, что номер ее телефона очень сложно запомнить: — 24-361. Запомнили? Повторите! Удивленный Эйнштейн ответил: — Конечно, запомнил! Две дюжины и 19 в квадрате.
Стивен Хокинг — один из крупнейших физиков-теоретиков и популяризатор науки. В рассказе о себе Хокинг упомянул, что стал профессором математики, не получая никакого математического образования со времён средней школы. Когда Хокинг начал преподавать математику в Оксфорде, он читал учебник, опережая собственных студентов на две недели.
Максимальное число, которое можно записать римскими цифрами, не нарушая правил Шварцмана (правил записи римских цифр) - 3999 (MMMCMXCIX) - больше трех цифр подряд писать нельзя.
Известно много притч о том, как один человек предлагает другому расплатиться с ним за некоторую услугу следующим образом: на первую клетку шахматной доски тот положит одно рисовое зёрнышко, на вторую — два и так далее: на каждую следующую клетку вдвое больше, чем на предыдущую. В результате тот, кто расплачивается таким образом, непременно разоряется. Это неудивительно: подсчитано, что общий вес риса составит более 460 миллиардов тонн.
Во многих источниках, встречается утверждение, что Эйнштейн завалил в школе математику или, более того, вообще учился из рук вон плохо по всем предметам. На самом деле всё обстояло не так: Альберт ещё в раннем возрасте начал проявлять талант в математике и знал её далеко за пределами школьной программы.
Главная | Областные олимпиады | Всероссийские олимпиады | Международные олимпиады
Решив предложенные варианты задач математических олимпиад областного, всероссийского и международного уровней, Вы реально можете рассчитывать на поступление в профильный ВУЗ, так как победители олимпиад такого уровня имеют очень существенные льготы при поступлении в высшие учебные заведения. Удачи.
Задания областной математической олимпиады 11 класс
Задания областной математической олимпиады:
Задача 1.
В треугольнике ABC проведена биссектриса BD, D лежит на стороне AC.
Пусть E и F основания перпендикуляров, опущенных из точек A и C на прямую BD, соответственно.
M — такая точка на стороне BC, что DM перпендикулярно BC.
Докажите, что угол EMD = углу DMF.
Задача 2.
В остроугольном треугольнике ABC на стороне BC выбрана точка D.
Пусть E и F — основания перпендикуляров, опущенных из точки D на стороны AB и AC соответственно.
Докажите, что если DE2 + DF2 принимает минимальное из всех возможных значений,
то угол между AD и биссектрисой угла A равен углу между биссектрисой и медианой,
опущенных из вершины A.
Задача 3.
В выпуклом четырехугольнике ABCD выполнено AB2 + CD2 = AC2 + BD2.
Найдите угол между сторонами BC и AD.
Задача 4.
Дан треугольник ABC.
Пусть r — радиус вписанной в него окружности;
ra — радиус полуокружности с центром на стороне BC, касающейся сторон AB и AC.
Аналогично определяются rb и rc.
Докажите справедливость равенства
2/r = 1/ra + 1/rb + 1/rc.
Задача 5.
Эльфы и тролли сидят за круглым столом, всего 60 существ.
Тролли всегда лгут, эльфы говорят правду, кроме случаев, когда они «ошибаются».
Каждый из сидящих утверждает, что сидит между эльфом и троллем, причем ровно два эльфа «ошиблись».
Сколько троллей сидит за столом?
Задача 6.
Решить в натуральных числах уравнение
a4 + a3 + a2 + a + 1 = b2
Задача 7.
Длины сторон треугольника — неравные между собой целые числа, а меньшая высота равна 8.
Найдите расстояние между центрами описанной и вписанной в треугольник окружностей.
Задача 8.
Полное замощение прямоугольника 2m x n с помощью mn прямоугольных плиток 2 x 1 называется трансверсальным,
если найдется прямая, делящая прямоугольник на две непустые части
и не проходящая через внутренние точки плиток.
а). Докажите, что любое замощение прямоугольника 6 x 6 с помощью 18 плиток является трансверсальным.
б). Найдется ли не трансверсальное замощение прямоугольника 8 x 8 с помощью 32 плиток?
Областные олимпиадные задания по математике для 11 класса:
продолжить решение >>>