автор урока - учитель математики - вт, 08/08/2023 - 22:57
Великие математики, биография, открытия
Пифагор | Лобачевский |
Главная | 1 класс | 2 класс | 3 класс | 4 класс | 5 класс | 6 класс
| 7 класс | 8 класс | 9 класс | 10 класс | 11 класс
Эйлер - краткая биография, открытия
Леонард Эйлер
(1707 - 1783)
Эйлер, крупнейший математик XVIII в., родился в Швейцарии.
В 1727 г. по приглашению Петербургской академии наук он приехал в Россию.
В Петербурге Эйлер попал в круг выдающихся ученых: математиков, физиков, астрономов, получил большие возможности для создания и издания своих трудов.
Он работал с увлечением и вскоре стал, по единодушному признанию современников, первым математиком мира.
Научное наследие Эйлера поражает своим объемом и разносторонностью.
В списке его трудов более 800 названий. Полное собрание сочинений ученого занимает 72 тома.
Среди его работ - первые учебники по дифференциальному и интегральному исчислению.
В теории числе Эйлер продолжил деятельность французского математика П. Ферма и доказал ряд утверждений: малую теорему Ферма, великую теорему Ферма для показателей 3 и 4. Он сформулировал проблемы, которые определили горизонты теории чисел на десятилетия.
Эйлер предложил применить в теории чисел средства математического анализа и сделал первые шаги по этому пути. Он понимал, что, двигаясь дальше, можно оценить число простых чисел, не превосходящих n, и наметил утверждение, которое затем докажут в XIX в. математики П. Л. Чебышев и Ж. Адамар.
Эйлер много работает и в области математического анализа.
Ученый впервые разработал общее учение о логарифмической функции, согласно которому все комплексные числа, кроме нуля, имеют логарифмы, причем каждому числу соответствует бесчисленное множество значений логарифма. В геометрии Эйлер положил начало совершенно новой области исследований, выросшей впоследствии в самостоятельную науку - топологию.
Имя Эйлера носит формула,
связывающая число вершин (В), ребер (Р) и граней (Г) выпуклого многогранника:
В - Р + Г = 2.
Даже основные результаты научной деятельности Эйлера трудно перечислить.
Здесь и геометрия кривых и поверхностей, и первое изложение вариационного исчисления с многочисленными новыми конкретными результатами.
У него были труды по гидравлике, кораблестроению, артиллерии, геометрической оптике и даже по теории музыки.
Он впервые дает аналитическое изложение механики вместо геометрического изложения Ньютона, строит механику твердого дела, а не только материальной точки или твердой пластины.
Одно из самых замечательных достижений Эйлера связано с астрономией и небесной механикой.
Он построил точную теорию движения Луны с учетом притяжения не только Земли, но и Солнца.
Это пример решения очень трудной задачи.
Последние 17 лет жизни Эйлера были омрачены почти полной потерей зрения.
Но он продолжал творить так же интенсивно, как в молодые годы.
Только теперь он уже не писал сам, а диктовал ученикам, которые проводили за него наиболее громоздкие вычисления.
Для многих поколений математиков Эйлер был учителем.
По его математическим руководствам, книгам по механике и физике училось несколько поколений.
Основное содержание этих книг вошло и в современные учебники.